Effects of Antioxidants in Human Cancers: Differential Effects on Non-Coding Intronic RNA Expression
نویسندگان
چکیده
The notion that dietary antioxidants can help fight cancer is popular. However, the mechanism(s) behind the effect of antioxidants in cancer is still unclear. Previous studies indicate that supplements can influence gene expression; however, all of these studies were focused on the coding/exonic gene expression. Studies are now emerging to highlight critical functional roles for RNAs expressed from the non-coding regions. This project was designed to study the effect of antioxidant supplements on non-coding intronic RNA expression in human cancers. Vitamin E, N-Acetyl cysteine (NAC) and Sulforaphane are commonly used supplements to prevent diseases including cancers. We studied the effect of these antioxidant supplements on the non-coding intronic RNA expression using publicly available datasets from a mouse model for lung cancer and prostate cancer cell lines. Although high throughput polyA-enriched RNA-Seq data characterize spliced coding mRNA regions, recent studies reveal the expression of reads from the non-coding intronic regions. Our analyses indicate that cancer cells have higher expression of introns compared to that of normal cells and that treatment with antioxidant supplements reduces the increased expression of introns of several genes. However, we did find high expression of introns of multiple genes including many oncogenes in the supplement treated groups compared to that of the control; this effect was distinct depending on the cell type and the supplement studied. Using RT-PCRs, we validated the expression of introns of two oncogenes, DLK1 and LRG1, known to be key players in lung cancer progression, and demonstrate changed intronic expression with supplement treatment in cancer cells. With regard to the antioxidant system, supplements did not change the intronic RNAs for endogenous antioxidant enzymes except for a significant decrease in the expression of superoxide dismutase (SOD) intronic RNA. Concurrently, we also found that a prolonged (48 h) exposure to Vitamin C, Vitamin E and Green tea extract reduced the enzymatic activity of SOD in lung cancer cells. The results from this study reveal that the antioxidant supplements have a significant effect on the intronic RNA expression of many genes including cancer genes that are not directly linked to the body's antioxidant system. It is important to study this novel effect of antioxidant supplements in detail as it may have a significant role in disease progression.
منابع مشابه
Regulatory effects of cis- and trans-LncRNAs on differential expression of genes following infection with viral hemorrhagic septicemia virus in rainbow trout (Oncorhynchus mykiss)
In this study the cis and trans regulatory effect of long non-coding genes (lncRNA) on the expression of genes in fish infected by Viral hemorrhagic septicemia virus (VHS) was investigated using RNA-seq technology. At the end of experimental period (the thirty fifth day), total RNA was extracted from spleen tissue (group treated with virus) and physiological serum (control group) was used to pr...
متن کاملInduction of apoptosis and necrosis in human acute erythroleukemia cells by inhibition of long non-coding RNA PVT1
Recent advances in molecular medicine have proposed new therapeutic strategies for cancer. One of the molecular research lines for the diagnosis and treatment of cancer is the use of long non-coding RNAs (LncRNAs) which are a class of non-coding RNA molecules longer than 200 base pairs in length that act as the key regulator of gene expression. Different aspects of cellular activities like cell...
متن کاملLong Non-coding RNA ZEB1-AS1 Promotes Tumorigenesis and Metastasis in Colorectal Cancer
Emerging evidence implicates that a large fraction of human genome was transcribed but the transcripts known as long non coding RNA are not translated into proteins. They are contributing in different cellular processes, including cellular proliferation and apoptosis. LncRNAs were found to play critical roles in many diseases and act as key regulators in malignancies. In this study, we investig...
متن کاملUp-Regulation of TPT1-AS1 and SAMMSON and Down-Regulation of LINC00961 Long Non-Coding RNAs (lncRNAs) as Potential Tumor Markers in Gastric Cancer
Background and Objective:Gastric Cancer (GC) is one of the deadliest cancers in the world. Recently, LINC00961, TPT1-AS1, and SAMMSON Long non-coding RNA (lncRNAs)have been discovered, which significantly contribute to the occurrence of various cancers. This study aimed to determine the expression levels of these genes in GC tissues, compared to healthy adjacent tissues, and the relationship of...
متن کاملSOX2OT, a long non-coding RNA involved in autophagy regulation
Summary: SOX2 overlapping transcript (SOX2OT) is a long non-coding RNA associated with cancer pathogenesis. It contributes to a variety of cellular functions and recent evidence propounds its association with autophagy process. It has been showed that SOX2OT can regulate the expression of different autophagy associated factors in human cells with different mechanisms, however more remains to ...
متن کامل